publications
publications by categories in reversed chronological order. generated by jekyll-scholar.
- Dipierro, S., Valdinoci, E., Wheeler, G., & Wheeler, V.-M. (2026). Existence theory for a bushfire equation. Journal of Differential Equations, 452, 113821. https://doi.org/https://doi.org/10.1016/j.jde.2025.113821
- Okabe, S., Schrader, P., Wheeler, G., & Wheeler, V.-M. (2025). A Sobolev gradient flow for the area-normalised Dirichlet energy of H^1 maps. Advances in Calculus of Variations.
- Miura, T., & Wheeler, G. (2025). Uniqueness and minimality of Euler’s elastica with monotone curvature. Journal of the European Mathematical Society.
- Miura, T., & Wheeler, G. (2025). The free elastic flow for closed planar curves. Journal of Functional Analysis, 111030.
- Rybka, P., & Wheeler, G. (2025). A classification of solitons for the surface diffusion flow of entire graphs. Physica D: Nonlinear Phenomena, 134702.
- Dipierro, S., Valdinoci, E., Wheeler, G., & Wheeler, V.-M. (2025). Bushfires and Balance: Proactive versus Reactive Policies in Prescribed Burning. Math. Model. Nat. Phenom., 20, 24. https://doi.org/10.1051/mmnp/2025023
- Andrews, B., & Wheeler, G. (2025). The curve-lengthening flow in inversive geometry. ArXiv Preprint ArXiv:2502.17896.
- Dipierro, S., Valdinoci, E., Wheeler, G., & Wheeler, V.-M. (2025). Self-sustaining traveling fronts for a model related to bushfires. ArXiv Preprint ArXiv:2504.21365.
- Cuthbertson, S., Wheeler, G., & Wheeler, V.-M. (2025). Curve shortening flow with an ambient force field. Calculus of Variations and Partial Differential Equations, 64(5), 154.
- He, S., Whale, B., Wheeler, G., & Wheeler, V.-M. (2025). A curvature flow approach to dorsal closure modelling. ArXiv Preprint ArXiv:2507.12088.
- Andrews, B., & Wheeler, G. (2025). On the planar free elastic flow with small oscillation of curvature. ArXiv Preprint ArXiv:2509.11129.
- Wheeler, G., & Wheeler, V.-M. (2024). Curve diffusion and straightening flows on parallel lines. Communications in Analysis and Geometry.
- O’Donnell, L., Wheeler, G., & Wheeler, V.-M. (2024). The gradient flow for entropy on closed planar curves. Archive for Rational Mechanics and Analysis, 248(4), 68.
- Dipierro, S., Valdinoci, E., Wheeler, G., & Wheeler, V.-M. (2024). A simple but effective bushfire model: analysis and real-time simulations. SIAM Journal on Applied Mathematics, 84(4), 1504–1514.
- Cuthbertson, S., Wheeler, G., & Wheeler, V. (2024). A curvature flow that deforms curves to an embedded target. ArXiv Preprint ArXiv:2411.18951.
- Bernard, Y., Wheeler, G., & Wheeler, V.-M. (2023). Analysis of the inhomogeneous Willmore equation. Annales De l’Institut Henri Poincaré C, 41(1), 129–158.
- Cooper, M. K., Wheeler, G., & Wheeler, V.-M. (2023). Theory and numerics for Chen’s flow of curves. Journal of Differential Equations, 362, 1–51.
- Schrader, P., Wheeler, G., & Wheeler, V.-M. (2023). On the H^1(ds^γ)-Gradient Flow for the Length Functional. The Journal of Geometric Analysis, 33(9), 297.
- Okabe, S., & Wheeler, G. (2023). The p-elastic flow for planar closed curves with constant parametrization. Journal De Mathématiques Pures Et Appliquées, 173, 1–42.
- Rybka, P., & Wheeler, G. (2023). Convergence of Solutions to a Convective Cahn–Hilliard-Type Equation of the Sixth Order in Case of Small Deposition Rates. SIAM Journal on Mathematical Analysis, 55(5), 5823–5861.
- McCoy, J. A., Schrader, P., & Wheeler, G. (2023). Representation formulae for higher order curvature flows. Journal of Differential Equations, 344, 1–43.
- Dean, B. A., Mundy, T., Price, O., Kennedy, M. A., Wheeler, G., Sheridan, L., & Iskra, L. (2023). Resourcing and recognition: Academics’ perceptions of challenges experienced embedding work-integrated learning in the curriculum. International Journal on Work Integrated Learning.
- McCoy, J., Wheeler, G., & Wu, Y. (2022). High order curvature flows of plane curves with generalised Neumann boundary conditions. Advances in Calculus of Variations, 15(3), 497–513.
- Mccoy, J. A., Wheeler, G. E., & Wu, Y. (2022). A Length-Constrained Ideal Curve Flow. The Quarterly Journal of Mathematics, 73(2), 685–699.
- Kwong, K.-K., Wei, Y., Wheeler, G., & Wheeler, V.-M. (2022). On an inverse curvature flow in two-dimensional space forms. Mathematische Annalen, 384(1), 1–24.
- Wheeler, G. (2021). Convergence for global curve diffusion flows. Mathematics In Engineering, 4(1), 1.
- Wheeler, G., & Wheeler, V.-M. (2020). Mean curvature flow with free boundary–Type 2 singularities. Mathematische Nachrichten, 293(4), 794–813.
- McCoy, J., Wheeler, G., & Wu, Y. (2020). A sixth order flow of plane curves with boundary conditions. Tohoku Mathematical Journal, 72(3), 379–393.
- Andrews, B., McCoy, J., Wheeler, G., & Wheeler, V.-M. (2020). Closed ideal planar curves. Geometry & Topology, 24(2), 1019–1049.
- Okabe, S., Pozzi, P., & Wheeler, G. (2020). A gradient flow for the p-elastic energy defined on closed planar curves. Mathematische Annalen, 378(1), 777–828.
- McCoy, J., & Wheeler, G. (2020). A rigidity theorem for ideal surfaces with flat boundary. Annals of Global Analysis and Geometry, 57(1), 1–13.
- Wheeler, G., & Wheeler, V.-M. (2019). Minimal hypersurfaces in the ball with free boundary. Differential Geometry and Its Applications, 62, 120–127.
- Bernard, Y., Wheeler, G., & Wheeler, V.-M. (2019). Concentration-Compactness and Finite-Time Singularities for Chen’s Flow. J. Math. Sci. Univ. Tokyo, 26, 55–139.
- Parkins, S., & Wheeler, G. (2019). The anisotropic polyharmonic curve flow for closed plane curves. Calculus of Variations and Partial Differential Equations, 58(2), 70.
- Droniou, J., Ilyas, M., Lamichhane, B. P., & Wheeler, G. E. (2019). A mixed finite element method for a sixth-order elliptic problem. IMA Journal of Numerical Analysis, 39(1), 374–397.
- He, S., Wheeler, G., & Wheeler, V.-M. (2019). On a curvature flow model for embryonic epidermal wound healing. Nonlinear Analysis, 189, 111581.
- McCoy, J., Wheeler, G., & Wu, Y. (2019). A sixth order curvature flow of plane curves with boundary conditions. 2017 MATRIX Annals, 213–221.
- McCoy, J., Wheeler, G., & Wu, Y. (2019). Evolution of closed curves by length-constrained curve diffusion. Proceedings of the American Mathematical Society, 147(8), 3493–3506.
- Bernard, Y., Wheeler, G., & Wheeler, V.-M. (2018). Rigidity and stability of spheres in the Helfrich model. Interfaces and Free Boundaries, 19(4), 495–523.
- Wheeler, G., & Wheeler, V.-M. (2017). Mean curvature flow with free boundary outside a hypersphere. Transactions of the American Mathematical Society, 369(12), 8319–8342.
- Andrews, B., Holder, A., McCoy, J., Wheeler, G., Wheeler, V.-M., & Williams, G. (2017). Curvature contraction of convex hypersurfaces by nonsmooth speeds. Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal), 2017(727), 169–190.
- McCoy, J., Parkins, S., & Wheeler, G. (2017). The geometric triharmonic heat flow of immersed surfaces near spheres. Nonlinear Analysis, 161, 44–86.
- Simon, M., & Wheeler, G. (2016). Some local estimates and a uniqueness result for the entire biharmonic heat equation. Advances in Calculus of Variations, 9(1), 77–99.
- Edwards, M., Gerhardt-Bourke, A., McCoy, J., Wheeler, G., & Wheeler, V.-M. (2016). The shrinking figure eight and other solitons for the curve diffusion flow. The Mechanics of Ribbons and Möbius Bands, 191–211.
- Drugan, G., Lee, H., & Wheeler, G. (2016). Solitons for the inverse mean curvature flow. Pacific Journal of Mathematics, 284(2), 309–326.
- Parkins, S., & Wheeler, G. (2016). The polyharmonic heat flow of closed plane curves. Journal of Mathematical Analysis and Applications, 439(2), 608–633.
- McCoy, J., & Wheeler, G. (2016). Finite time singularities for the locally constrained Willmore flow of surfaces. Communications in Analysis and Geometry, 24(4), 843–886.
- Wheeler, G. (2015). Global analysis of the generalised Helfrich flow of closed curves immersed in \mathbbR^n. Transactions of the American Mathematical Society, 367(4), 2263–2300.
- Wheeler, G. (2015). Gap phenomena for a class of fourth-order geometric differential operators on surfaces with boundary. Proceedings of the American Mathematical Society, 143(4), 1719–1737.
- Wheeler, V. M., Wheeler, G. E., McCoy, J. A., & Sharples, J. J. (2015). Modelling dynamic bushfire spread: perspectives from the theory of curvature flow. MODSIM2015, 21st International Congress on Modelling and Simulation, 319–325.
- McCoy, J., & Wheeler, G. (2013). A classification theorem for Helfrich surfaces. Mathematische Annalen, 357, 1485–1508.
- Dall’Acqua, A., Deckelnick, K., & Wheeler, G. (2013). Unstable Willmore surfaces of revolution subject to natural boundary conditions. Calculus of Variations and Partial Differential Equations, 48, 293–313.
- Wheeler, G. (2013). Chen’s conjecture and \varepsilon-superbiharmonic submanifolds of Riemannian manifolds. International Journal of Mathematics, 24(04), 1350028.
- Wheeler, V.-M., McCoy, J. A., Wheeler, G., & Sharples, J. J. (2013). Curvature flows and barriers in fire front modelling. MODSIM.
- Wheeler, G. (2012). Surface diffusion flow near spheres. Calculus of Variations and Partial Differential Equations, 44(1), 131–151.
- Wheeler, G. (2012). On the curve diffusion flow of closed plane curves. Annali Di Matematica Pura Ed Applicata, 1–20.
- Wheeler, G. (2011). Lifespan theorem for simple constrained surface diffusion flows. Journal of Mathematical Analysis and Applications, 375(2), 685–698.
- McCoy, J., Wheeler, G., & Williams, G. (2011). Lifespan theorem for constrained surface diffusion flows. Mathematische Zeitschrift, 269(1), 147–178.
- Wheeler, G. (2010). Fourth order geometric evolution equations. Bulletin of the Australian Mathematical Society, 82(3), 523–524.
- Bunder, M. W., Tognetti, K. P., & Wheeler, G. E. (2008). On binary reflected Gray codes and functions. Discrete Mathematics, 308(9), 1690–1700.
- Wheeler, G. (2008). Shi’s local estimates. Oberwolfach Reports.
- Wheeler, G. E., Safavi-Naini, R., & Sheppard, N. P. (2005). Weighted segmented digital watermarking. Digital Watermarking: Third International Workshop, IWDW 2004, Seoul, South Korea, October 30-November 1, 2004, Revised Selected Papers 3, 89–100.